Journal of Organometallic Chemistry, 59 (1973) 281–292 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STRUCTURE CRISTALLINE DES DEUX ÉTHYLPHÉNYL-0-MÉTHYL-BENCHROTRÉNYL MÉTHANOLS

YVES DUSAUSOY, JEAN PROTAS

Laboratoire de Minéralogie et Cristallographie, Équipe de Recherche Associée au C.N.R.S. no. 162, Faculté des Sciences, Centre de 2.³ Cycle, Case Officielle no. 140, 54037-Nancy Cedex (France)

et JACK BESANÇON

Laboratoire de Polarographie Organique Associé au C.N.R.S., Faculté des Sciences, Boulevard Gabriel, 21000-Dijon, (France)

(Reçu le 23 janvier 1973)

SUMMARY

The crystalline structure of the two diastereomeric ethyl-phenyl-o-methylbenchrotrenylmethanols (racemic forms) have been determined by X-ray diffraction in support of the discussion on asymmetric induction presented in J. Organometal. Chem., 59 (1973) 267.

RÉSUMÉ

La structure cristalline des deux éthylphényl-o-méthylbenchrotrényl méthanols (sous formes racémiques) a été déterminée par analyse cristallographique pour servir de support à la discussion sur l'induction asymétrique présentée dans le mémoire précédent (J. Organometal. Chem., 59 (1973) 267).

INTRODUCTION

Dans le mémoire précédent¹ nous avons discuté d'induction asymétrique induite par un groupe o-méthyle lors de synthèses magnésiennes opérant sur des cètones dérivées du benzène chrome tricarbonyle (benchrotrène). La détermination des configurations relatives des deux alcools (Vbc) (F 89°) et (V'bc) (F 163°) (Schéma 1 du précédent mémoire), ne peut être définie avec certitude par analyse des seules données spectroscopiques. Ce mémoire établit ces configurations par analyse cristallographique.

RÉSULTATS EXPÉRIMENTAUX ET DISCUSSION

I. Paramètres cristallins

Diastéréoisomère F 89°

Le diastéréoisomère racémique F 89°C cristallise dans l'holoédrie du système triclinique. Les paramètres de la maille ont pour valeurs: $a = 12.83 \pm 0.03, b = 10.98 \pm$

0.03, $c = 6.59 \pm 0.02$ Å; α 72.87, β 101.95°, γ , 112.16°; V 817.14 Å³; d_{calc} 1.41 g·cm⁻³; Z 2.

L'enregistrement du réseau réciproque a été réalisé sur diffractomètre automatique. Les 1450 réflexions indépendantes satisfaisant au critère statistique $\sigma(I)/I < 0.15$ ont été corrigées des phénomènes de Lorentz et de polarisation.

Diastéréoisomère F 163°

Le diastéréoisomère racémique F 163° cristallise dans l'holoédrie du système monoclinique avec les paramètres suivants: $a=21.00\pm0.03$, $b=17.79\pm0.03$, $c=12.43\pm0.02$ Å; β 111.51°; V 3407 Å³; d_{calc} 1.35 g·cm⁻³; Z 8.

Les conditions régissant la présence des réflexions sont sur (h k l) h+k=2nmode de réseau C; sur (h 0 l) l=2n miroir de glissement c.

Les deux groupes d'espace possibles sont donc le groupe non centrosymétrique Cc (no. 19 des tables internationales de cristallographie) l'unité asymétrique est alors constituée de deux molécules, et le groupe centrosymétrique C 2/c (no. 15 des tables internationales de cristallographie) avec 8 molécules équivalentes dans la maille.

L'enregistrement du réseau réciproque a été réalisé sur diffractomètre automatique en utilisant le rayonnement $K\alpha$ du cuivre. Les 907 réflexions retenues pour la résolution de la structure satisfaisant aux critères statistiques $\sigma(I)/I < 0.15$, ont été corrigées des phénomènes de Lorentz et de polarisation.

TABLEAU 1

	x		y		z	
Cr	0.08237	(11)	0.28767	(13)	0.06365	(23)
CI	0.20572	(93)	0.29847	(87)	-0.13999	(161)
C2	0.18659	(98)	0.42593	(95)	-0.20505	(158)
C3	0.07373	(109)	0.42482	(101)	-0.25444	(166)
C4	-0.01975	(116)	0.30646	(101)	-0.25233	(176)
C5	0.00017	(106)	0.18008	(113)	-0.19778	(167)
C6	0.11092	(94)	0.17993	(95)	-0.14380	(161)
C7	0.27792	(156)	0.56247	(110)	0.22460	(228)
C8	0.32371	(99)	0.28821	(89)	-0.09134	(172)
C9	0.37089	(107)	0.32720	(118)	- 0.30647	(191)
C10	0.49581	(131)	0.32823	(167)	-0.27951	(245)
C11	0.32705	(106)	0.15180	(105)	0.04225	(178)
C12	0.30475	(134)	0.04412	(111)	0.06075	(265)
C13	0.31311	(147)	-0.08003	(136)	0.06592	(351)
C14	0.33986	(169)	-0.10193	(152)	0.29005	(285)
C15	0.36242	(162)	0.00222	(185)	0.38708	(269)
C16	0.35622	(107)	0.13138	(139)	0.26178	(221)
CP1	0.11585	(105)	0.16559	(99)	0.30150	(175)
CP2	0.15228	(107)	0.42097	(102)	0.20045	(218)
CP3	-0.04363	(98)	0.25319	(106)	0.18614	(211)
10	0.13223	(98)	0.08830	(81)	0.45723	(139)
02	0.19816	(102)	0.51157	(83)	0.28126	(149)
O3	-0.12158	(70)	0.22993	(93)	0.27254	(141)
04	0.39288	(93)	0.38685	(74)	0.03161	(152)

ALCCOL F 89°: COORDONNÉES ATOMIQUES ET ÉCARTS-TYPE

conduit sans ambiguité à la centrosymétrie :							
Centro	Non centro	Observé					
1.000	1.000	1.000					
0.798	0.886	0.595					
0.968	0.736	1.256					
32.00	37.00	31.64					
5.00	2.00	6.53					
0.30	0.01	0.67					
	<i>Centro</i> 1.000 0.798 0.968 32.00 5.00 0.30	Centro Non centro 1.000 1.000 0.798 0.886 0.968 0.736 32.00 37.00 5.00 2.00 0.30 0.01					

Afin de lever l'indétermination sur la centrosymétrie, les facteurs de structure normalisés, E_{h} ont été calculés*. L'étude de la distribution de $|\overline{E}_{h}|^{2}$, $|E_{h}|$ et $|E_{h}^{2}-1|$ conduit sans ambiguité à la centrosymétrie:

II. Résolution des structures

Les deux structures ont été résolues par la méthode dite de l'atome lourd. L'interprétation des pics de la fonction de Patterson a permis de déterminer les coordonnées fractionnaires de l'atome de chrome. Celles-ci affinées par méthode de moindres carrés conduisent aux facteurs résiduels R 0.47 et R 0.44. Des sections de la fonction de densité électronique permettent alors de mettre en évidence les restes molé-

TABLEAU 2

ALCOOL F 8	39° :	TENSEUR	D'AGITATION	THERMIC	UE
------------	-------	---------	-------------	---------	----

	β11	β22	β ₃₃	β ₁₂	β ₁₃	β ₂₃
Cr	0.006072	0.008020	0.020194	0.005674	0.003454	0.005042
C1 .	0.004844	0.007216	0.020808	0.003453	0.007412	-0.000742
C2	0.007485	0.007672	0.017164	0.004308	0.003941	0.003088
C3	0.006943	0.009733	0.015532	0.005615	0.000250	-0.003402
C4	0.008774	0.009395	0.021829	0.007539	0.001802	-0.004344
C5	0.007492	0.011220	0.022970	0.006574	0.000234	-0.006424
C6	0.005684	0.009676	0.019631	0.003342	0.003723	-0.011446
C7	0.009923	0.007061	0.038517	0.002152	0.013227	-0.005524
C8	0.005331	0.007665	0.029174	0.002371	0.003074	-0.007403
C9	0.008371	0.012986	0.027320	0.007828	0.015795	0.001914
C10	0.007502	0.019352	0.056231	0.004935	0.017138	-0.025200
C11	0.006386	0.010643	0.026430	0.008172	0.002677	-0.002165
C12	0.007999	0.010022	0.045179	0.007546	0.002845	0.012986
C13	0.009370	0.010911	0.057571	0.009869	0.003465	0.000214
C14	0.012358	0.016670	0.042402	0.016936	0.006071	0.001615
C15	0.015513	0.020957	0.026594	0.019896	0.011649	0.006456
C16	0.009025	0.017292	0.025127	0.013261	0.006027	0.003947
CPI	0.008789	0.010860	0.024448	0.007215	0.005034	-0.013110
CP2	0.008737	0.009416	0.034662	0.003847	0.002850	-0.014836
CP3	0.006268	0.011999	0.034642	0.008545	0.001168	-0.007997
01	0.013056	0.013635	0.022332	0.014492	0.003155	-0.000730
02	0.013597	0.012537	0.039739	0.004347	0.006127	-0.019977
O3	0.008810	0.017575	0.036994	0.009363	0.013740	-0.014313
04	0.008533	0.010725	0.038876	0.004473	-0.002706	-0.023851

* La liste des facteurs de structures peut être obtenue chez les auteurs.

	x		y		z	
Cr	0.58104	(10)	0.30345	(15)	-0.02244	(20)
Cl	0.62626	(65)	0.28862	(85)	-0.15987	(143)
C2	0.63798	(57)	0.38461	(83)	-0.11050	(121)
C3	0.64572	(59)	0.20599	(105)	0.08185	(137)
C4	0.67132	(55)	0.39913	(83)	0.00705	(111)
C5	0.68040	(63)	0.22280	(84)	0.03856	(144)
C6	0.69337	(54)	0.32047	(88)	0.08885	(141)
C7	0.73117	(64)	0.32291	(100)	0.21583	(146)
C8	0.68508	(66)	0.50544	(93)	0.05439	(120)
C9	0.64159	(77)	0.58108	(98)	-0.03796	(134)
C10	0.65307	(99)	0.68660	(117)	0.01393	(181)
C11	0.80670	(79)	0.54817	(107)	0.19652	(148)
C12	0.87791	(95)	0.56623	(106)	0.21787	(172)
C13	0.89989	(76)	0.56715	(97)	0.12373	(157)
C14	0.76286	(59)	0.52737	(94)	0.08297	(138)
C15	0.85625	(69)	0.54844	(101)	0.01490	(138)
C16	0.78764	(88)	0.52444	(98)	-0.01033	(145)
CC1	0.51197	(81)	0.38808	(110)	- 0.08669	(133)
CC2	0.51897	(94)	0.20502	(125)	0.06424	(179)
CC3	0.56672	(93)	0.31577	(137)	0.11030	(167)
01	0.46803	(43)	0.44465	(82)	-0.13077	(96)
02	0.47882	(63)	0.14286	(116)	-0.09224	(129)
03	0.55856	(62)	0.32098	(105)	0.19975	(121)
он	0.67524	(53)	0.51534	(69)	0.16091	(83)

ALCOOL F 163°: COORDONNÉES ATOMIQUES ET ÉCARTS-TYPE

culaires. Un affinement des coordonnées fractionnaires de chaque atome affecté d'un facteur d'agitation thermique individuel et anisotrope conduit pour le diastéréoisomère F 89° à un facteur de réliabilité R 0.078 et pour le diastéréoisomère F 163° à R 0.070. Les Tableaux 1, 2, 3, 4 donnent les valeurs des coordonnées fractionnaires, leurs écarts-type et les composantes du tenseur d'agitation thermique de chaque atome.

III. Conformations et configurations des molecules des deux diastéreoisomères

Les conformations et configurations relatives des deux molécules de la forme $F 89^\circ$ et de la forme $F 163^\circ$ de l'alcool étudié sont représentées sur les Figs. 1 et 2.

(1) Le trépied carbonyle

La conformation du trépied carbonyle dans les deux molécules est en parfait accord avec une coordination octaédrique du chrome, les angles C-Cr-C sont en effet de 89° 4′, 89° 5′, 89° 3′ et 89° 9′, 85° 1′, 87° 4′. Les distances chrome-carbone (carbonyle) sont comprises entre 1.77 et 1.83 Å, les distances C-O entre 1.16 et 1.20 Å. Les distances Cr-O sont sensiblement constantes, à la précision des résultats près, et égales à la moyenne trouvée dans les benchrotrènes (2.98 Å). Les angles entre les plans formés par les trois carbones ou les trois oxygènes avec le plan moyen benzène sont inférieurs à 3° (Tableaux 5 à 10).

L'orientation du trépied carbonyle par rapport au substrat organique est identique pour les deux diastéréoisomères. Dans les deux cas le trépied carbonyle

	β11	β22	β ₃₃	β ₁₂	β ₁₃	β23
Cr	0.001577	0.003466	0.005277	0.000024	0.002222	0.000765
Či	0.001871	0.003184	0.006201	0.000852	0.002908	0.001145
C2	0.001598	0.000749	0.000070	0.000203	0.001376	0.005890
C3	0.001425	0.004527	0.002730	-0.000230	0.002225	0.004726
C4	0.001193	0.000000	0.000861	-0.000171	0.001403	0.008051
C5	0.001716	0.002587	0.007984	-0.001905	0.005097	0.000477
C6	0.000953	0.002343	0.008532	0.002607	0.003755	0.001075
C7	0.001880	0.003894	0.002480	-0.000703	0.002510	0.005622
Č8	0.001950	0.004382	0.009322	0.000156	0.002843	0.006278
C9	0.002610	0.002017	0.004945	0.001235	0.000428	0.002531
C10	0.004061	0.002207	0.006215	-0.000747	0.003835	0.008488
CII	0.002612	0.006199	0.009960	0.001854	-0.000382	~0.005347
C12	0.002978	0.004684	0.009310	0.000091	0.001698	0.002141
C13	0.002020	0.001626	0.004773	0.000309	0.001493	0.009198
C14	0.002106	0.001924	0.004118	0.000349	0.000621	-0.000216
C15	0.002150	0.002779	0.007355	-0.000025	0.005962	0.006428
C16	0.003126	0.000464	0.006636	-0.000085	0.005790	0.005203
CC1	0.002212	0.002520	0.002061	0.000642	0.001571	0.008290
CC2	0.002879	0.006188	0.013977	0.000150	0.005670	-0.000335
CC3	0.002869	0.011853	0.006886	0.004903	0.000004	-0.004566
01	0.002043	0.007171	0.010171	-0.000966	0.004154	-0.001950
02	0.003998	0.006880	0.016779	-0.002091	0.006710	0.001757
03	0.003721	0.011411	0.009702	0.002196	0.005082	0.001556
ОН	0.002439	0.003253	0.001872	0.000976	0.003156	0.005797

ALCOOL F 163°: TENSEUR D'AGITATION THERMIQUE

Fig. 1. Projection de la molécule de l'alcool F 89° sur le plan moyen benzénique.

éclipse le carbone porteur du radical méthyle. Cette conformation reflète l'effet électronique cumulatif prévisible qualitativement pour les deux substituants CH_3 et $-C(C_2H_5)C_6H_5$ car on sait que, pour les dérivés benchrotréniques substitués, les OH

prolongements des vecteurs O-C-Cr pointent vers les sommets du ligande qui présentent la densité électronique maximale. Le calcul quantitatif de la distribution des charges sur le ligande par la méthode CNDO donne d'ailleurs les résultats représentés sur la Fig. 3.

(2) Les substrats organiques

Les noyaux benzènes complexés ne sont pas tout à fait réguliers (1.38-1.46 Å, 115-123°) mais restent parfaitement plans puisqu'aucun atome de carbone ne s'écarte de plus de 0.02 Å du plan moyen benzène. La valeur moyenne de la liaison C-C est de 1.420 et 1.415 Å dans les deux molécules, valeur identique à celle trouvée dans les autres benchrotrènes. Cet allongement de la liaison par rapport à celle du benzène

Fig. 2. Projection de la molecule de l'alcool F 163°.

TABLEAU 5

ALCOOL F	163°:	DISTANCES	INTERATOMIQUES
----------	-------	-----------	----------------

and the second se					
	d(Å)	σ (Å)		d (Å)	σ (Å)
C1-C2	1.425	0.020	Cr-C3	2.231	0.015
C2-C3	1.462	0.020	Cr-C4	2.220	0.018
C3C4	1.401	0.025	Cr-C5	2.231	0.023
C4-C5	1.442	0.023	Cr~C6	2.194	0.018
C5-C6	1.433	0.021	Cr~CCl	1.802	0.016
C6-C1	1.378	0.021	Cr-CC2	1.824	0.020
C2C7	1.473	0.025	Cr~CC3	1.774	0.030
C1C8	1.563	0.020	Cr-01	2.976	0.011
C8C9	1.538	0.021	Cr-O2	2.984	0.017
C9C10	1.568	0.026	Cr-O3	2.978	0.021
OH-C8	1.445	0.023	CCI-01	1.175	0.019
C8-C11	1.576	0.020	CC2-02	1.160	0.026
C11-C12	1.396	0.022	CC3-03	1,204	0.036
C12-C13	1.440	0.029	C10C8	2.587	0.025
C13-C14	1.391	0.037	Cr-OH	3.785	0.010
CI4-CI5	1.345	0.025	OH-O3	3,789	0.021
C15-C16	1.397	0.027	OH-C9	2.453	0.021
C16-C11	1.433	0.031	C12OH	2.666	0.023
Cr-Cl	2.216	0.013	C10-OH	2.917	0.025
Cr–C2	2.262	0.012	C7-OH	2.881	0.018

(suite à la page 289)

C1C2C3	115.5	1.3	C13-C14-C15	122.5	1.9
C2C3C4	123.0	1.5	C14-C15-C16	121.4	1.7
C3-C4-C5	118.4	1.5	C15-C16-C11	117.7	1.7
C4-C5-C6	119.1	1.5	C16-C11-C12	121.4	1.6
C5-C6-C1	120.7	1.4	C16-C11-C8	116.2	1.4
C6-C1-C2	123.0	1.3	C1-Cr-C2	37.1	0.5
C1C2C7	129.7	1.4	C2CrC3	38.0	0.6
C3C2C7	114,7	1.4	C3CrC4	36.7	0.6
C6-C1-C8	117.2	1.3	C4-Cr-C5	37.8	0.6
C2C1C8	119.8	1.3	C5CrC6	37.8	0.6
C1C8OH	110.7	1.2	CC1-Cr-CC2	88.8	0.9
C1-C8-C9	114.3	1.3	CC1-Cr-CC3	87.6	1.0
C8C9C10	112.9	1.5	CC3CrCC2	89.1	1.1
C1C8C11	107.8	1.2	01Cr02	89.4	0.4
OHC8C11	103.3	1.2	O1CrO3	89.5	0.4
C9C8C11	109.4	1.3	O2CrO3	89.3	0.5
С9С8ОН	110.6	1.3	Cr-CC1-O1	176.6	1.6
C8-C11-C12	122.4	1.4	CrCC2O2	179.5	2.0
C11-C12-C13	118.1	1.7	Cr-CC3-O3	177.9	2.1
C12C13C14	118.7	1.8			

ALCOOL F 163°: ANGLES DE LIAISON (DEGRÉS)

TABLEAU 7

ALCOOL F 163°

Équation de plan moyen benzène complexé									
0.03550x + 0.00009y - 0.00372z = 0.5									
C1	0.020 Å	C7	0.040 Å	C13	3.112 Å	CC1	— 2.789 Å		
C2	-0.013	C8	0.029	C14	4.095	CC2	- 2.768		
C3	-0.019	C9	-0.356	C15	3.824	CC3	- 2.774		
C4	0.004	C10	- 0.359	C16	2.533	01	- 3.436		
C5	0.002	C11	1.483	OH	-0.791	O2	- 3.445		
C6	0.040	C12	1.745	Cŗ	-1.711	O3	3.468		
Équat 0.01 C11 C12	Équation du plan moyen benzène non complexé -0.01964x+0.11342y-0.01825z \approx -0.5 C11 0.002 Å C13 -0.028 Å C15 0.025 Å								
$E_{12} = 0.018$ $E_{14} = 0.007$ $E_{16} = 0.023$ $E_{16} = 0.023$ $E_{16} = 0.023$ = 0.07849x + 0.01960y - 0.0458z = 1.000									
Équation du plan défini par C8–C9–C10 0.03414x + 0.00369v - 0.01283v = -0.5									
Angle	entre le	ſle	noven l	benzène n	on complexé	: 98.56	0		
plan b	enzène com	olexé { le j	plan défini p	ar C1-C8	-OH	: 52.14	D		
et	•	Lie	plan défini p	ar C8-C9	-C10	: 15.63	٥		

۰.

	d (Å)	σ (Å)		d (Å)	σ (Å)
C1C2	1.437	0.015	Cr-C1	2.228	0.013
C2-C3	1.413	0.019	Cr-C2	2.257	0.010
C3C4	1.396	0.014	Cr-C3	2.202	0.009
C4-C5	1.432	0.018	Cr-C4	2.218	0.011
C5C6	1.396	0.018	CrC5	2.233	0.011
C6-C1	1.409	0.012	Cr-C6	2.212	0.013
C2-C7	1.504	0.015	CrCP1	1.832	0.010
C1–C8	1.521	0.017	Cr-CP2	1.793	0.013
C8-04	1.453	0.013	CrCP3	1.818	0.014
C8C9	1.537	0.018	CP1-01	1.162	0.012
C9-C10	1.571	0.023	CP2-02	1.166	0.015
C8C11	1.509	0.014	CP3-03	1.160	0.017
C11C12	1.442	0.021	Cr01	2.993	0.008
C12C13	1.404	0.019	Cr-02	2.960	0.009
C13-C14	1.415	0.028	Cr03	2.978	0.010
C14-C15	1.381	0.029	Cr-04	3.747	0.011
C15-C16	1,438	0.023	C10-04	2.984	0.024
C16-C11	1.390	0.017	C7-04	2.818	0.019

ALCOOL F 89°: DISTANCES INTERATOMIQUES

TABLEAU 9

ALCOOL F 89°: ANGLES DE LIAISON (DEGRÉS)

designed and the second second second					
C1-C2-C3	118.3	1.0	C14-C15-C16	120.2	1.7
C2-C3-C4	123.2	1.1	C15-C16-C11	120.1	1.4
C3-C4-C5	118.3	1.1	C16-C11-C12	120.0	1.2
C4-C5-C6	118.8	1.1	C16-C11-C8	120.5	1.2
C5-C6-C1	123.3	1.0	C1CrC2	37.4	0.4
C6C1C2	117.8	0.9	C2CrC3	36.9	0.4
C1C2C7	125.1	1.0	C3CrC4	36.8	0.4
C3C2C7	116.6	1.0	C4-CrC5	37.5	0.4
C6-C1-C8	119.1	0.9	C5-CrC6	36.6	0.4
C2-C1-C8	122.6	0.9	C6-Cr-C1	36.9	0.4
C1-C8-O4	107.4	0.9	CP1-Cr-CP2	89.9	0.5
C1-C8-C9	107.1	0.9	CP1-Cr-CP3	85.1	0.5
C8C9C10	112.6	1.1	CP2CrCP3	87.4	0.5
C1C8C11	113.7	0.9	O1-Cr-O2	90.7	0.3
04-C8-C11	106.7	0,9	01-Cr-03	82.7	0.3
C9-C8-C11	112.6	0.9	O2CrO3	87.4	0.3
C9C8O4	109.1	0.9	Cr–CP1–O1	176.2	1.1
C8-C11-C12	119.4	1.1	CrCP2O2	177.1	1.2
C11-C12-C13	118.4	1.4	CrCP3O3	177.1	1.1
C12-C13-C14	121.6	1.7	C10-O4-Cr	125.8	0.4
C13-C14-C15	119.6	1.7			

ALC	O	OL	F	89°
-----	---	----	---	-----

Équation du plan moyen benzène complexé									
0.10107x - 0.13806y - 0.57387z = -0.49985									
C1	0.022 Å	C7	0.092 Å	C13	-0.081 Å	CP1	- 2.874 Å		
C2	0.022	C8	0.054	C14	- 1.417	CP2	-2.741		
C3	-0.004	C9	1.519	C15	- 2.249	CP3	-2.838		
C4	-0.012	C10	1.732	C16	- 1.770	01	-3.651		
C5	0.010	C11	-0.469	O4	0.787	O2	- 3.358		
C6	0.005	C12	0.411	Cr	- 1.723	O3	- 3.593		
			•						
Équation du plan moyen benzène non complexé									
0.13158x - 0.01180y - 0.01459z = -0.5000									
CÌI	0.006Å	C13	0.011Å	C15	0.002 Å				
C12	0.003	C14	-0.010	Clé	0.007				
Équation du plan défini par C1–C8–O4									
-0.14911x - 0.16095y + 0.31791z = 1.000									
Équation du plan défini par C1–C8–C9–C10									
0.06389x + 0.16963y + 0.02742z = -0.49997									
Cl	0.017 Å	C8	-0.016Å	C9	0.020 Å				
		C10	0.018						
Angle entre le plan (le plan moven benzène complexé 107.00°									
benzène complexé { le plan défini par C1–C8–O4 139.27°									
et (le plan défini par C1-C8-C9-C10 106.88°									

-000 0.007 0.015 0.038 Cr(CO)3 -0.00 F= 163°C F= 89°C

Fig. 3. Répartition des charges électroniques sur les carbones du cycle benzénique.

Fig. 4. Effets de blindage du noyau phényle dans les deux molécules.

(1.397 Å) résulte d'une part du transfert des πz électrons du noyau des orbitales métalliques et d'autre part du transfert en retour de $d\pi$ électrons du métal vers les orbitales antiliantes π^* du noyau, mais la part faite à ces deux types de transfert dans l'allongement de la liaison C-C est difficilement déterminable. Aucune alternance dans la longueuer des liaisons du noyau n'apparait; la déformation de celui-ci doit provenir de la présence des deux substituants. (suite à la page 292)

290

On remarque par ailleurs dans les deux structures que le méthyle C7 s'écarte un peu du plan moyen benzène (0.04 et 0.07 Å) et que l'angle C1–C2–C7 a pour valeur 130 et 125°. Cet écart par rapport à l'angle théorique de 120° est probablement dû à l'empêchement stérique entre le méthyle et l'oxygène de la fonction alcool, la distance entre le carbone et l'oxygène n'étant que de 2.88 et de 2.81 Å. Cet empêchement stérique se manifeste également dans la valeur des angles de liaisons du carbone tétraédrique (113.7°–106.7° et 114.3°–103.3°, σ_{moy} 1°) qui s'éloignent sensiblement de la valeur 109°.

(3) Configurations moléculaires relatives

Les configurations relatives des deux alcools diastéréoisomères sont représentées sur les Figs. 1 et 2. Les représentations données dans chaque cas correspondent conventionnellement à l'une des formes énantiomères.

Si on adopte la nomenclature absolue systématique proposée par Schlogl puis Gautheron et Broussier², les deux diastéréoisomères racémiques étudiés sont des mélanges des deux formes correspondantes soit respectivement: alcool F 89°: éthylphényl-o-benchrotrénylméthanol (1 Rp, Rc+1 Sp, Sc); alcool F 163°: éthylphényl-o-benchrotrényl méthanol (1 Rp, Sc+1 Sp, Rc).

Dans ce symbolisme, les sigles 1 Rp ou 1 Sp définissent la chiralité plane (ou métallocénique) au niveau du carbone benchrotrénique qui porte le groupe $-C(C_2H_5)C_6H_5$ et les sigles Rc ou Sc définissent la chiralité au niveau du carbone OH

asymétrique de ce groupe.

Ces deux configurations relatives sont précisément celles avancées lors de l'analyse des données spectroscopiques infrarouges et RMN.

Cette dernière analyse s'appuyait sur un postulat préliminaire suggéré par l'examen des bande v(OH): l'existence d'une conformation privilégiée imposée par une liaison hydrogène entre l'atome métallique et l'oxygène de l'hydroxyle.

Les données cristallographiques confirment cette hypothèse. Elles montrent en effet que, pour les deux diastéréoisomères, l'oxygène du groupe OH se situe du même côté que le trépied carbonyle. La distance métal-oxygène est sensiblement la même dans les deux diastéréoisomères (3.74 et 3.78 Å). Elle autorise l'existence d'une liaison hydrogène et l'interprétation proposée pour la perturbation de la vibration v(OH)apparait légitime.

Les Figs. 5 et 6 montrent l'empilement moléculaire dans les deux structures. Les distances intermoléculaires étant supérieures à 3.20 Å, la cohésion cristalline est assurée par des forces de Van der Waals.

BIBLIOGRAPHIE

1 J. Besançon, J. Tirouflet, Y. Dusausoy et A. Card, J. Organometal. Chem., 59 (1973) 267.

2 B. Gautheron et R. Broussier, Bull. Soc. Chim. Fr., (1971) 3636 et réf. citées.